Коротко и понятно об экспертных системах

Система является интеллектуальной, если она обладает знаниями и умеет использовать их для достижения сформулированной цели. Знания – это то, без чего нет интеллектуальной системы. Экспертные системы явились первыми действительно интеллектуальными системами и, в конечном счете, интеллектуальность определила их коммерческий успех.

Разработки универсальных программ, использующих общие методы решения широкого класса задач, существенных практических результатов не принесли, но появилось понимание крайней ограниченности применения формально-математических методов в этой области. В 70-е годы была разработана и принята принципиально новая концепция: чтобы сделать систему интеллектуальной, ее нужно снабдить множеством высококачественных специальных знаний о некоторой предметной области. Процесс создания экспертных систем на первых этапах заключается в специфическом взаимодействии эксперта (экспертов) и инженера по знаниям с целью «извлечения» из эксперта и встраивания в систему процедур, стратегий эмпирических правил, которые он использует для решения задач.

Эксперт – это человек, который благодаря обучению и опыту может делать то, что мы все, остальные люди делать не умеем; эксперты работают не просто профессионально, но быстро и эффективно. Они хорошо умеют распознавать в проблемах, с которыми сталкиваются, примеры тех типовых проблем, с которыми они уже знакомы. Очень важно подчеркнуть, что эксперт должен не только знать, но и уметь. Именно этим свойством отличаются базы данных от баз знаний – базы знаний активны.

Экспертные системы как отдельное направление выделилось из общего русла исследований по искусственному интеллекту в начале 80-х г.г. Основным предметом исследований нового направления являются знания – их приобретение, представление и использование. Специалисты, работающие в этой области все чаще используют для ее наименования термин «инженерия знаний».

Очень значимым отличием экспертных систем от классических программ, работа которых основана на точных данных является то, что экспертные системы могут ошибаться. Причина ошибок лежит в том, что знания специалистов, как и знания, заложенные в экспертные системы, не точны. Важно, по крайней мере, чтобы экспертные системы ошибались не чаще, чем ошибается человек-эксперт.

Т.о. можно сформулировать следующее определение экспертной системы. Экспертная система – это вычислительная система, в которую включены знания специалистов о некоторой узкой предметной области в форме базы знаний. Экспертные системы должны уметь принимать решения вместо специалиста в заданной предметной области.

Характерными чертами экспертной системы являются:

  • четкая ограниченность предметной области;
  • способность принимать решения в условиях неопределенности;
  • способность объяснять ход и результат решения понятным для пользователя способом;
  • четкое разделение декларативных и процедурных знаний (фактов и механизмов вывода);
  • способность пополнять базу знаний, возможность наращивания системы;
  • результат выдается в виде конкретных рекомендаций для действий в сложившейся ситуации, не уступающих решениям лучших специалистов;
  • ориентация на решение неформализованных (способ формализации пока неизвестен) задач;
  • алгоритм решения не описывается заранее, а строится самой экспертной системой;
  • отсутствие гарантии нахождения оптимального решения с возможностью учиться на ошибках.

Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта-человека. Решения экспертных систем обладают прозрачностью, т.е. могут, быть объяснены пользователю на качественном уровне (в отличие от решений, полученных с помощью числовых алгоритмов, и в особенности от решений полученных статистическими методами). Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.

Прокрутить вверх